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Semiconductor Bloch equations, which microscopically describe the dynamics of a Coulomb interacting,
spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium
regimes. These equations have been recently extended to include the spin degree of freedom and used to
explain spin dynamics in the coherent regime. In the quasiequilibrium limit, one solves the Bethe-Salpeter
equation in a two-band model to describe how optical absorption is affected by Coulomb interactions within a
spin unpolarized plasma of arbitrary density. In this work, we modified the solution of the Bethe-Salpeter
equation to include spin polarization and light holes in a three-band model, which allowed us to account for
spin-polarized versions of many-body effects in absorption. The calculated absorption reproduced the spin-
dependent, density-dependent, and spectral trends observed in bulk GaAs at room temperature, in a recent
pump-probe experiment with circularly polarized light. Hence, our results may be useful in the microscopic
modeling of density-dependent optical nonlinearities due to spin-polarized carriers in semiconductors.
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I. INTRODUCTION

As the nascent field of spintronics1 is merged with opto-
electronics, it becomes increasingly important to understand
the physics of the optical properties of spin-polarized carriers
in semiconductors, which are nowadays studied by circularly
polarized pump-probe experiments.2 This degree of freedom
of the spin, in the optical properties of photoexcited semi-
conductors, is mostly ignored in the literature. For spin-
unpolarized photoexcited carriers in a pure semiconductor, it
is known that the Coulomb attraction between the electron
and hole created by a photon causes excitonic resonances
and enhances its absorption.3 As the background electron-
hole plasma density is increased, the long-ranged Coulomb
interaction between this photoexcited electron-hole pair and
the plasma can no longer be neglected. Semiconductor Bloch
equations �SBEs� fully describe this interacting plasma and
its time-dependent dynamics. SBEs may be solved in two
different time scales: the coherent regime �where the induced
dipole moment follows the optical field without dephasing�
or the quasiequilibrium regime. In many applications, for
example, semiconductor laser diodes, it may be assumed that
the electrons and holes are thermalized within their respec-
tive bands.4 This quasiequilibrium approximation simplifies
the original coupled SBEs. The resulting microscopic theory
for the effect of a spin-unpolarized interacting plasma �arbi-
trary density� on absorption agrees well with experiment.5

Here, the linear optical susceptibility is obtained by solving
the Bethe-Salpeter equation in the �quasistatic� screened lad-
der approximation.6,7 In this formalism, the many-body ef-
fects of the plasma on absorption are the screening of the
Coulomb enhancement, phase-space filling �PSF� by the car-
riers, and band gap renormalization �BGR�. These effects can
be viewed as density-dependent optical nonlinearities caused
by the quasiequilibrium plasma.3,4 A two-band model is used
for the conduction and valence bands by either ignoring the
light hole �lh� band or lumping it with the heavy hole �hh�
band via an effective valence band density of states.8

Photoexcited carriers may be spin polarized by the optical
orientation technique.9 It is based on the selection rules for

transitions induced by circularly polarized light from both hh
and lh bands into the conduction band. A three-band SBE to
model intervalence band coherence of quantum wells, under
circularly polarized photoexcitation, was formulated,10

which included hh-lh band coupling. For modeling optical
response in carrier spin-polarized bulk and quantum well
semiconductors, a very general six-band SBE has been re-
cently framed and applied �after neglecting some terms� to
give a microscopic description of spin dynamics.11–13 As was
done for the �spin-unpolarized� semiconductor laser,4 it
maybe desirable to solve such model, spin-SBEs, in the qua-
siequilibrium regime, for a microscopic understanding of a
new type of spin optoelectronic device, the spin vertical cav-
ity surface emitting laser �spin VCSEL�.14

In the quasiequilibrium regime, using the pump-probe
technique, Nemec et al.15 recently studied absorption spectra
in carrier spin-polarized bulk GaAs at room temperature.
They observed a spectral crossover in the difference in ab-
sorption between right ��+� and left ��−� circularly polarized
lights. This circular dichroism experienced by the probe is
due to the electronic spin polarization excited by an earlier
�+ pump pulse. For a microscopic description of this experi-
ment, we present the spin-modified solution of the Bethe-
Salpeter equation, extended to include the lh band. Our ap-
proach is equivalent to solving the full spin-SBEs in the
quasiequilibrium regime, but neglecting the terms corre-
sponding to hh-lh coupling, spin splitting of the single par-
ticle states, and electron-hole exchange interaction. The last
two terms are important for spin relaxation processes, but not
for optical transitions. hh-lh coupling was neglected because
it is important only for intervalence band processes. Numeri-
cal simulations based on this framework showed the spectral
crossover and were in reasonable agreement with the experi-
mental spin-dependent, density-dependent, and spectral
trends. The Bethe-Salpeter equation may therefore be useful
in modeling spin-dependent many-body effects in semicon-
ductors in the quasiequilibrium regime.
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II. METHOD

We first modify the solution of the Bethe-Salpeter equa-
tion for spin polarization ��� and inclusion of lh. Then, the
method used to compare with the time-dependent experimen-
tal data15 is described.

A. Spin-polarized optical susceptibility (including light holes)

At t=0, both electron and hole spins are created by the
right circularly polarized pump pulse in the experiment;
however, hole spins relax within t�100 fs leaving behind a
spin polarization only from electrons. The selection rules fa-
vor creating spin-down �↓� electrons from the hh band three
times as much as spin-up �↑� electrons from the lh band �↓
and ↑ electrons have their spin opposite and along the propa-
gation direction of the pump, respectively�. Moreover, the
joint density-of-states effective mass for hh transitions mr,hh
is nearly twice mr,lh for lh transitions. These two factors
cause n↓=6n↑, as pointed out in Ref. 16 �n↓+n↑=n, the
plasma density�. So at t=0, the spin polarization �max=5 /7,
where � is defined as

� =
n↓ − n↑

n↓ + n↑
.

Later, the same selection rules involving the hh and lh bands
determine the absorption of the right ��+� or left ��−� circu-
larly polarized probes �Fig. 1�. Therefore, here, the absorp-
tion depends not just on the total density of electrons and
holes �as described in Refs. 3–8 for �=0� but individually on
n↓, n↑, nhh, and nlh.

PSF reduces absorption since lesser number of states are
made available for optical transitions. BGR increases absorp-
tion since the transitions take place at larger wave vector, as

the band gap is narrowed. PSF and BGR, which are density
dependent, are different for transitions into the ↓ and ↑ elec-
tron bands �Fig. 1�. As will be seen later, these transitions
also have a different Coulomb enhancement because the en-
hancement itself depends on PSF and BGR. All this affects
the susceptibility �cv��� pertaining to optical transitions
from the valence �v=hh , lh� to the conduction �c= ↓ , ↑ �
bands. The complex susceptibility ����� for �� can be writ-
ten as a sum of two such transitions �Fig. 1�,

�+��� = �↓,hh��� + �↑,lh��� , �1a�

�−��� = �↑,hh��� + �↓,lh��� . �1b�

Here, �+ is sensitive to the ↓ band, whereas �− is weighted
toward the ↑ band, because the transition from the hh band is
favored over that from the lh band. Therefore, in general, a
circular dichroism results from a nonzero �. The complex
optical dielectric function ����� is obtained from ����� us-
ing

����� = �	 + 4
����� , �2�

from which the absorption ����� and circular dichroism
�����=�+���−�−��� were obtained. Also, since linearly
polarized light can be written in terms of �+ and �−, we
obtain

�0 =
�+ + �−

2
, �3�

where �0 is the susceptibility of linearly polarized light. It
may be verified that if �=0, �0=�+=�−.

The complex optical susceptibility �cv��� of a particular
transition was related to the microscopic susceptibility
�cv�k ,�� by

�cv��� =
1

L3�
k

dcv�k��cv�k,�� . �4�

The sum over wave vector does not include the spin degen-
eracy. The interband dipole matrix element for circularly po-
larized light dcv�k� reflected the selection rules,

dcv�k� =
eP0

m0Eg�1 +
2k2

2mr,vEg
� �v = hh� �5a�

=�1

3

eP0

m0Eg�1 +
2k2

2mr,vEg
� �v = lh� , �5b�

where m0 is the free electron mass, mr,v= �1 /me+1 /mv�−1,
and Eg is the band gap. The momentum matrix element P0,
in an eight-band model,17 is given by

P0
2 �

m0Eg

2
�m0

me
− 1�3Eg + 3�so

3Eg + 2�so
, �6�

where �so is the spin-orbit splitting of the valence band at the
center of the Brillouin zone.

-3/2
1/2-1/2

3/2

-1/21/2

σ
+

σ
−

3 31 1

FIG. 1. Selection rules in schematic band structure of bulk GaAs
at the center of the Brillouin zone, with n↓�n↑. Incident light is
assumed to be propagating in the z direction. Bands are labeled with
their mJ indices, where mJ is the component of total angular mo-
mentum J along z direction. Solid and dashed arrows, with the
relative transition rates indicated at their base, correspond to �+ and
�− helicities of the probe. ↓ and ↑ electron bands are labeled with
mJ=−1 /2 and 1 /2, respectively. The spin-unpolarized valence
bands are labeled with mJ= �3 /2 �hh� and �1 /2 �lh�. PSF at a
nonzero temperature is shown by the gradation in thickness of the
bands �the small PSF of the lh band has not been shown�. The
greater BGR of the ↓ band causes its band edge to be lower com-
pared to the ↑ band.
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1. Interacting optical spectrum

We repeat the steps for obtaining �cv��� outlined in Ref.
18, but with modifications for lh and spin. �cv�k ,��, which
causes the dichroism, is obtained by numerically solving the
effective Bethe-Salpeter equation describing the repetitive
electron-hole scattering �ladder approximation�,

�� − Eg − �Eg
cv + i�cv�k,��	�cv�k,��

= − �1 − fc�k� − fv�k�	

�
dcv�k� + �
k�

Vs��k − k����cv�k�,��� . �7�

The screened Coulomb potential Vs�q� derived in the random
phase approximation and simplified in the quasistatic single
plasmon-pole approximation is given by

Vs�q� =
1

L3

4
e2

�0q2 1 −
1

1 +
q2

�2 + � �q

�pl
�2� , �8�

�pl
2 =

4
e2

�0
�

j

nj

mj
�j = ↓,↑,hh,lh� , �9�

�2 =
4
e2

�0
�

j

�nj

�� j
, �10�

where � j is the chemical potential, �pl and � are the 3d
plasma frequency and wave number, respectively, and �q

2

simulates the electron-pair continuum. Note that �pl and �
have been made � dependent. In Eq. �7�, the factor �1
− fc�k�− fv�k�	 causes PSF. The Fermi functions f j�k� that de-
scribed the distribution of the electrons and holes were

f j�k� =
1

exp���Ej�k� − � j	� + 1
, �11�

where Ej�k�=2k2 / �2mj� and �=1 / �kBT�. We ignored the
small spin dependence of the electron mass19 �i.e., m↓=m↑
=me�. Besides, the nonparabolic or anisotropic nature of the
bands, especially of the hh, has been neglected for the sake
of simplicity. The BGR, �Eg

cv, for an optical transition be-
tween the valence band and the conduction band is

�Eg
cv�k� = ec�k� + ev�k� . �12�

The self-energy ej�k� of the jth quasiparticle, in the quasi-
static approximation, is

ej�k� � − �
k�

Vs��k − k���f j�k�� +
1

2
�Vs�r = 0� − V�r = 0�	 ,

�13�

where the first term is the “screened exchange” and the sec-
ond term is the “Coulomb hole.” The Coulomb-hole term is
the same for each of the j quasiparticles. In Eq. �8�, �q

2,
which simulates the electron-pair continuum, as well as the
temperature-dependent damping �cv�k ,�� and band gap Eg

in Eq. �7� were obtained from Refs. 18 and 5. The chemical
potentials � j, assuming that the electrons and holes were in

quasiequilibrium, was obtained using a form of the Aguilera-
Navarro approximation.18 The hh and lh have the same
chemical potential because they are in equilibrium with each
other.

Rearranging Eq. �7�, we obtained

�cv�k,�� = �0
cv�k,��
1 +

1

dcv�k��
k�

Vs��k − k����cv�k�,��� ,

�14�

where

�0
cv�k,�� = −

dcv�k��1 − fc�k� − fv�k�	
� − Eg − �Eg

cv + i�cv�k,��
. �15�

To obtain the correct crossover between gain and absorption
with �cv�k ,��, �0

cv�k ,�� was described by a spectral
representation.18 By defining

�cv�k,�� = �cv�k,���0
cv�k,�� , �16�

and substituting it into Eq. �14�, we obtained for the vertex
function �cv�k ,��,

�cv�k,�� = 1 +
1

dcv�k��
k�

V̄s�k,k���0
cv�k�,���cv�k�,�� .

�17�

Here, Vs��k−k��� has been replaced in Eq. �17� by its angle-

averaged value V̄s�k ,k�� because we assumed that only
s-wave scattering contributed to the optical transitions. We
used a matrix of approximately 200�200 Gauss-Legendre
quadrature points to represent the vertex integral equation
�Eq. �17�	. The diagonal singularity of the matrix was regu-
larized by the compensation technique,7 before it was in-
verted to give the solution for �cv�k ,��. The complex optical
susceptibility �cv��� of a particular transition was obtained
from

�cv��� =
1

L3�
k

dcv�k��cv�k,���0
cv�k,�� , �18�

where we substituted Eq. �16� in Eq. �4�.

2. Noninteracting optical spectrum

If �cv�k ,�� is neglected in Eq. �18�, we obtain the “non-
interacting” susceptibility, which differs from the truly non-
interacting susceptibility due to the BGR term present in
�0

cv�k ,�� �cf. Eq. �15�	. �cv�k ,��, which depends on PSF and
BGR �cf. Eq. �17� and �15�	, causes the excitonic resonances
and the Coulomb enhancement. This is because �cv�k ,��
expresses the influence of multiple electron-hole scattering
�resulting from their attractive interaction� on the susceptibil-
ity.

It is difficult to separate PSF and BGR in the interacting
����� due to the presence of the �cv�k ,�� term. Therefore,
we used the noninteracting �cv��� to study how competition
between PSF and BGR influences �����.

In our calculated spectra, we took the spectral representa-
tion for only the imaginary part of �0

cv�k ,��.18 Also, the
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k-dependent BGR was taken as a rigid shift at kF
= �3
2n�1/3. These simplifications are not expected to signifi-
cantly affect the results. The material parameters used were
exciton Rydberg E0=4.2 meV, exciton Bohr radius a0
=125 Å, electron mass me=0.0665m0, hh mass mhh
=0.457m0, lh mass mlh=0.08m0, �so=0.341 eV �0=13.71,
�	=10.9, and T=295 K.

B. Comparison with experiment

The probe spectral width was accounted for by adding its
“half width at half maximum” value of 15 meV to �cv�k ,��
in the calculation. The experimental data are mostly in terms
of the normalized differential transmittance D,

D =
��T

T
�+

− ��T

T
�−

��T

T
�+

+ ��T

T
�− . �19�

Here, ��T /T��= �T�−T� /T, where T� is the transmission of
probe �� after the sample is pumped with �+. T is the un-
pumped transmission through the bulk sample of thickness
w�1 �m. If the change from the unpumped absorption ���

is such that ����1 /w�104 cm−1, we can write D as

D �
��+ − ��−

��+ + ��− �20a�

=
�+ − �−

�+ + �− − 2�0
=

��

�+ + �− − 2�0
. �20b�

The unpumped absorption �0��� could be calculated from
�0��� with �=0 and the background doping density of the
sample,15 n0=1015 cm−3. The sign of D is opposite to that of
�� because screening by the pumped carriers usually re-
duces the absorption, i.e., �++�−−2�0 is a negative quantity.
Furthermore, D is not affected by an overall density-
independent scaling factor C��� that could multiply the cal-
culated absorption, since D is a normalized quantity. Usually,
C��� is needed to match the calculated absorption to the
experimental value of absorption in a “pure,” unexcited
sample.8

The �-dependent calculations were compared with the
time-dependent experimental data by using the following
equation describing spin relaxation:

��t� = �maxe
−2t/�s, �21�

where �max=5 /7 and the spin relaxation time15 �s=130 ps.
We assumed a temporally constant plasma density n since t
��r�1 ns, where �r is the carrier recombination time.

III. RESULTS AND DISCUSSION

We show that our calculation captures all the trends in the
experimental data in probed energy h�, spin polarization �,
and pumped density n. To explain how PSF and BGR cause
a ��-independent� crossover in ��, we first discuss the re-
sults for noninteracting ��. After showing the effect of the

Coulomb interaction on ��, we finally compare the results
for interacting �� with the data. The agreement with the data
comes directly from our calculation, without requiring us to
adjust �, n, or sample-dependent broadening.

We did two checks on the spin-polarized calculation. Set-
ting �=0 gave back the unpolarized absorption �Fig. 2�a�	, as
calculated by Ref. 18, for different plasma densities. At
lower densities, with �=0, we also obtained the broadened
Elliott’s formula20 by removing the k dependence of
�cv�k ,�� and dcv�k�. The discrepancy with Elliott’s formula
was �10−3 for photon energies that exceeded the band gap.

Inclusion of lh serves only to enhance the unpolarized
absorption by 1 /6, 1 /3 from the matrix element, and 1 /2
from the density of states �compare dashed and solid curves
for n=n0 in Fig. 2�a�	. Treating lh independently �without
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FIG. 2. �a� Spin-unpolarized interacting �, with background
n0=1015 cm−3 and photoexcited plasma densities F0=1.3
�1017 cm−3 and 8F0. The dashed curve differs from the solid curve
with n=n0 by the neglect of lh. �b� Noninteracting �� decomposed
into hh and lh transitions, each of which has contributions from
PSF and BGR. Within a transition, PSF and BGR oppose each
other. Between transitions, PSF and BGR from hh oppose those
from lh. �c� Density dependence of total noninteracting ��. The
curve for n=F0 can be obtained by summing together the curves in
�b�.
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hh-lh coupling� did not lead to noticeable artifacts in the
calculated absorption.

A. Noninteracting optical spectra

The microscopic noninteracting calculation agrees with
the earlier simplified explanation15 that the �� crossover is
caused by competition between PSF and BGR. Within a tran-
sition �either hh or lh�, PSF dominated at lower energies
whereas BGR �of the opposite sign� dominated at higher
energies. Moreover, PSF and BGR from lh transitions were
opposite in sign �due to the selection rules in Eq. �1�	 com-
pared to those from hh transitions �Fig. 2�b�	. The �� cross-
over shifted to higher energies as n was increased because
PSF became more important15 �Fig. 2�c�	.

In contrast, the �� crossover energy was independent of
�, at a fixed n �Fig. 3�a�	, due to the PSF and BGR interplays.
A similar �-independent crossover occurred at higher ener-
gies, if hh transitions alone were considered. The weaker lh
transitions did not result in a crossover in �� in the energy
interval shown, as can be verified by summing the dashed
curves in Fig. 2�b�. Since � determines n↓ relative to n↑, we
study the cause of the �-independent crossover by plotting �+

�inducing transitions only between the hh and ↓ bands after
neglecting the lh transitions� vs n↓ �Fig. 3�b�	. Analogous
results were obtained by plotting �− vs n↑. The n↓ indepen-
dence of total �+ at the crossover energy, indicates that op-
posing trends between PSF and BGR for each helicity of
light, caused the �� crossover to be independent of �.

B. Interacting optical spectra

The Coulomb interaction increased the magnitude of ��
and shifted its crossover energy, but it did not affect the

trends in h�, n, and �. The interaction caused a sharp peak
near the band gap �due to excitonic effects� in the interacting
��, for n=F0, and also enhanced it at higher energies com-
pared to the noninteracting �� �compare solid and dashed
curves for n=F0 in Fig. 4�a�	. At n=8F0, the peak near the
band gap in the interacting �� was not as pronounced �due
to the almost complete excitonic ionization� compared to the
noninteracting case �solid and dashed curves for n=8F0 in
Fig. 4�a�	. However, at higher energies, they show a persist-
ing Coulomb enhancement even at n=8F0. This is because
the screening by the plasma is not very effective at high
energies8 �hence, the solid curves for n=n0 and 8F0 in Fig.
2�a� approach each other at high energies�. However, the �
independence of the �� crossover energy was preserved, de-
spite Coulomb interactions �Fig. 4�b�	. We found that the
pump-induced changes in the refractive index obtained from
the complex susceptibility �0

cv��� shifted the crossover by
3% to lower energy �for the solid curve n=F0 in Fig. 4�a�	.
The cause of the shift of the crossover to lower energies
when we compare the interacting with the noninteracting
curves is unclear.

C. Comparison with experiment

We compare our calculation with the experiment by ac-
counting for probe width in the broadening �Fig. 5�a�	. We
think that spectral averaging due to this additional broaden-
ing causes the crossover to shift from �h�−Eg� /E0=10.5
�solid curve for n=F0 in Fig. 4�a�	 to �h�−Eg� /E0=15.3.
Because D is plotted instead of �� in Fig. 5�a�, there is an
overall flip of sign compared to Fig. 4.

Our model reproduces the experimental observations that
D changes sign either as � is varied at a fixed n �Fig. 5�a�	 or
n is varied at a fixed � �Fig. 5�b�	. Furthermore, the expected
� independence of the crossover energy �Fig. 4�b�	 is indeed
shown by the data �flat dashed curve in Fig. 6�. The tendency
of D to change sign at a fixed probe wavelength or energy
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�Fig. 5�b�	 as n is increased occurred over a certain range of
energies. This tendency is also shown by �� over 10.5
� �h�−Eg� /E0�23.1 �solid curves for n=F0 and 8F0 in Fig.
4�a�	. Outside this range �D� increased, without flipping its
sign, with n. We cannot obtain the carrier thermalization part
of the experimental spectra �t�1 ps� in Fig. 6 because it has
not been accounted for in the calculation.

The maximum value of D due to PSF is 0.35 �instead of
0.25 as stated in Ref. 15�. This is because, by assuming
���−n in Eq. �20a�, we obtain D=� /2 and as noted in Sec.
II, �max=5 /7. The numerically calculated D supported the

above reasoning: in Figs. 5 and 6, D�0.35 at lower energies.
However, near the band gap, perhaps the excitonic nonlin-
earity slightly increased the value of D �Fig. 5�a�	. The cal-
culated �D� exceeds 0.35 also at higher energies where PSF is
expected to be less important �since D is negative�.

In Figs. 5�b� and 6, for trends near the crossover energy,
the calculation used �=816 nm and �=834 nm instead of
the actual probes �=775 nm and �=800 nm, respectively.
This mismatch in the crossover energy could be due to sev-
eral reasons. The quasistatic approximation used here is jus-
tified for the hh band due to its large mass, but it is known to
be unsatisfactory for the conduction band.8 A better result is
expected by using dynamic screening instead. We have
shown that n �compare n=F0 and n=8F0 curves in Fig. 4�a�	
and broadening �as indicated earlier in this section� strongly
influence the crossover energy. Experimental uncertainties in
the photoexcited carrier density n �by a factor of 2� and the
sample-dependent broadening �taken equal to the probe
width�, neither of which were adjusted for, would have
shifted the crossover to higher energies by 22% and 77%,
respectively. However, we stress that although in Figs. 5�b�
and 6 the calculation does not yield the experimental cross-
over energy, the fact that it captures the trends in h�, �, and
n shown by the data suggests that we have incorporated the
relevant physics. Studying the effect of hh anisotropy on the
results,21 we found that the crossover shifted to lower ener-
gies by 13% for mhh=0.91m0 �along the L direction� and to
higher energies by 10% for mhh=0.35m0 �along the X direc-
tion� for the n=F0 curve in Fig. 4�a�. We also tried to adjust
within a factor of 2 the values of �q

2 and the numerical con-
stant � �describing ��k ,��	,18 but found that the crossover
energy changed by �1%.

IV. CONCLUSION

We have provided a method to calculate spin-polarized
many-body effects in the room temperature absorption spec-
tra of bulk GaAs. This was done by modifying the existing
microscopic theory for absorption, which is known to match
experiment over a wide range of plasma densities. Light hole
contributions were also included. The agreement with results
of a recent circularly polarized pump-probe experiment came
directly from our calculation, without requiring us to adjust
spin-polarization, plasma density, or sample-dependent
broadening. We find that the �� crossover and the experi-
mental spin-dependent, density-dependent, and spectral fea-
tures are reproduced, thus validating the use of our model to
understand circularly polarized pump-probe experiments in
III-V semiconductors, in the quasiequilibrium regime. This
also opens up the possibility that the Bethe-Salpeter equation
may be used to theoretically describe spin-dependent many-
body nonlinearities in the operation of the spin VCSEL and
perhaps make predictions about its performance.
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